Skip to content
Menu
Cellular and Organismic Networks
  • The Group
  • Research
    • Pollinator-Microbe-Plant interactions
    • Bee-Plant-Interactions
    • Tools
    • Other Ecology Research
    • Other Microbiome Research
  • Publications
  • Institution
Cellular and Organismic Networks

Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis?

Posted on May 2, 2022June 28, 2022

Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen–bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis.

Full article: https://royalsocietypublishing.org/doi/10.1098/rstb.2021.0171

by Sara Diana Leonhardt, Birte Peters and Alexander Keller

Alexander Keller Follow

CiyaTheFox
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
2 Sep

Happy to share our paper on stingless bees foraging behavior on the Cerrado biodiversity hotspot!
Read and spread! 🐝🌼
With Carol Proença Fernanda Carvalho @TNCVasconcelos @ajcaguiar @CiyaTheFox
And other amazing students and colleagues

Reply on Twitter 1697995288743399509 Retweet on Twitter 1697995288743399509 12 Like on Twitter 1697995288743399509 65 Twitter 1697995288743399509
Retweet on Twitter Alexander Keller Retweeted
biorxivpreprint bioRxiv @biorxivpreprint ·
23 Jun

Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization https://biorxiv.org/cgi/content/short/2023.06.20.545721v1 #bioRxiv

Reply on Twitter 1672115753196060673 Retweet on Twitter 1672115753196060673 2 Like on Twitter 1672115753196060673 1 Twitter 1672115753196060673
ciyathefox Alexander Keller @ciyathefox ·
15 Jun

Semi-automated curation and manual addition of sequences to build reliable and extensive reference databases for ITS2 vascular plant DNA (meta-)barcoding

Reply on Twitter 1669402679062274048 Retweet on Twitter 1669402679062274048 Like on Twitter 1669402679062274048 2 Twitter 1669402679062274048
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
8 Jun

New preprint

Contrasting patterns of foraging behavior in Neotropical stingless bees using pollen and honey metabarcoding

Reply on Twitter 1666890843020484621 Retweet on Twitter 1666890843020484621 7 Like on Twitter 1666890843020484621 20 Twitter 1666890843020484621
Retweet on Twitter Alexander Keller Retweeted
geobiodiversity Senckenberg Research @geobiodiversity ·
30 May

#Invasive alien species not only colonize foreign regions, but they can also carry #invasive #microbiomes on their skin and in their gut. This may pose an undiscovered threat to native ecosystems, according to a recent study. 👉http://sgn.one/m8z
#SenckenbergScience

Reply on Twitter 1663482812052172802 Retweet on Twitter 1663482812052172802 4 Like on Twitter 1663482812052172802 9 Twitter 1663482812052172802
Load More

Recent Posts

  • Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding
  • Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020
  • Bumble bee workers face decreased efficiency of pollen collection and reduction in size due to Sulfoxaflor exposure in late European summer
  • Phylogenetic relatedness of food plants reveals highest insect herbivore specialisation at intermediate temperatures along a broad climatic gradient
  • Diets maintained in a changing world: Does land-use intensification alter wild bee communities by selecting for flexible generalists?

Categories

  • Bee-Plant-Interactions
  • Other Ecology Research
  • Other Microbiome Research
  • Plant Microbiomes
  • Pollinator Microbiomes
  • Tools
©2023 Cellular and Organismic Networks | WordPress Theme by Superbthemes.com