Skip to content
Menu
Cellular and Organismic Networks
  • The Group
  • Research
    • Pollinator-Microbe-Plant interactions
    • Bee-Plant-Interactions
    • Tools
    • Other Ecology Research
    • Other Microbiome Research
  • Publications
  • Institution
Cellular and Organismic Networks

How wild bees find a way in European cities: Pollen metabarcoding unravels multiple feeding strategies and their effects on distribution patterns in four wild bee species

Posted on October 28, 2021June 28, 2022

Urban ecosystems can sustain populations of wild bees, partly because of their rich native and exotic floral resources. A better understanding of the urban bee diet, particularly at the larval stage, is necessary to understand biotic interactions and feeding behaviour in urban ecosystems, and to promote bees by improving the management of urban floral resources. We investigated the larval diet and distribution patterns of four solitary wild bee species with different diet specialization (i.e. Chelostoma florisomne, Osmia bicornis, Osmia cornuta and Hylaeus communis) along urban intensity gradients in five European cities (Antwerp, Paris, Poznan, Tartu and Zurich) using two complementary analyses. Specifically, using trap-nests and pollen metabarcoding techniques, we characterized the species’ larval diet, assessed diet consistency across cities and modelled the distribution of wild bees using species distribution models (SDMs).


Our results demonstrate that urban wild bees display different successful strategies to exploit existing urban floral resources: not only broad generalism (i.e. H. communis) but also intermediate generalism, with some degree of diet conservatism at the plant family or genus level (i.e. O. cornuta and O. bicornis), or even strict specialization on widely available urban pollen hosts (i.e. C. florisomne). Furthermore, we detected important diet variation in H. communis, with a switch from an herbaceous pollen diet to a tree pollen diet with increasing urban intensity.
Species distribution modelling indicated that wild bee distribution ranges inside urban ecosystems ultimately depend on their degree of specialization, and that broader diets result in less sensitivity to urban intensity.

Policy implications. Satisfying larval dietary requirements is critical to preserving and enhancing wild bee distributions within urban gradients. For high to intermediate levels of feeding specialization, we found considerable consistency in the preferred plant families or genera across the studied cities, which could be generalized to other cities where these bees occur. Identifying larval floral preferences (e.g. using pollen metabarcoding) could be helpful for identifying key plant taxa and traits for bee survival and for improving strategies to develop bee-friendly cities.

Casanelles Abella, J., S. Müller, A. Keller, C. Aleixo, M. Alós Orti, F. Chiron, N. Deguines, T. Hallikma, L. Laanisto, P. Pinho, R. Samson, P. Tryjanowski, A. Van Mensel, L. Pellissier, and M. Moretti (2021) “How bees find a way in European cities: pollen metabarcoding unravels multiple feeding strategies and their effects on dis- tribution patterns in four wild bee species” Journal of Applied Ecology in press

DOI: https://doi.org/10.1111/1365-2664.14063

Alexander Keller Follow

CiyaTheFox
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
2 Sep

Happy to share our paper on stingless bees foraging behavior on the Cerrado biodiversity hotspot!
Read and spread! 🐝🌼
With Carol Proença Fernanda Carvalho @TNCVasconcelos @ajcaguiar @CiyaTheFox
And other amazing students and colleagues

Reply on Twitter 1697995288743399509 Retweet on Twitter 1697995288743399509 12 Like on Twitter 1697995288743399509 65 Twitter 1697995288743399509
Retweet on Twitter Alexander Keller Retweeted
biorxivpreprint bioRxiv @biorxivpreprint ·
23 Jun

Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization https://biorxiv.org/cgi/content/short/2023.06.20.545721v1 #bioRxiv

Reply on Twitter 1672115753196060673 Retweet on Twitter 1672115753196060673 2 Like on Twitter 1672115753196060673 1 Twitter 1672115753196060673
ciyathefox Alexander Keller @ciyathefox ·
15 Jun

Semi-automated curation and manual addition of sequences to build reliable and extensive reference databases for ITS2 vascular plant DNA (meta-)barcoding

Reply on Twitter 1669402679062274048 Retweet on Twitter 1669402679062274048 Like on Twitter 1669402679062274048 2 Twitter 1669402679062274048
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
8 Jun

New preprint

Contrasting patterns of foraging behavior in Neotropical stingless bees using pollen and honey metabarcoding

Reply on Twitter 1666890843020484621 Retweet on Twitter 1666890843020484621 7 Like on Twitter 1666890843020484621 20 Twitter 1666890843020484621
Retweet on Twitter Alexander Keller Retweeted
geobiodiversity Senckenberg Research @geobiodiversity ·
30 May

#Invasive alien species not only colonize foreign regions, but they can also carry #invasive #microbiomes on their skin and in their gut. This may pose an undiscovered threat to native ecosystems, according to a recent study. 👉http://sgn.one/m8z
#SenckenbergScience

Reply on Twitter 1663482812052172802 Retweet on Twitter 1663482812052172802 4 Like on Twitter 1663482812052172802 9 Twitter 1663482812052172802
Load More

Recent Posts

  • Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding
  • Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020
  • Bumble bee workers face decreased efficiency of pollen collection and reduction in size due to Sulfoxaflor exposure in late European summer
  • Phylogenetic relatedness of food plants reveals highest insect herbivore specialisation at intermediate temperatures along a broad climatic gradient
  • Diets maintained in a changing world: Does land-use intensification alter wild bee communities by selecting for flexible generalists?

Categories

  • Bee-Plant-Interactions
  • Other Ecology Research
  • Other Microbiome Research
  • Plant Microbiomes
  • Pollinator Microbiomes
  • Tools
©2023 Cellular and Organismic Networks | WordPress Theme by Superbthemes.com