Skip to content
Menu
Cellular and Organismic Networks
  • The Group
  • Research
    • Pollinator-Microbe-Plant interactions
    • Bee-Plant-Interactions
    • Tools
    • Other Ecology Research
    • Other Microbiome Research
  • Publications
  • Institution
Cellular and Organismic Networks

Species richness is more important for ecosystem functioning than species turnover along an elevational gradient

Posted on September 28, 2021June 28, 2022

Many experiments have shown that biodiversity enhances ecosystem functioning. However, we have little understanding of how environmental heterogeneity shapes the effect of diversity on ecosystem functioning and to what extent this diversity effect is mediated by variation in species richness or species turnover. This knowledge is crucial to scaling up the results of experiments from local to regional scales. Here we quantify the diversity effect and its components—that is, the contributions of variation in species richness and species turnover—for 22 ecosystem functions of microorganisms, plants and animals across 13 major ecosystem types on Mt Kilimanjaro, Tanzania. Environmental heterogeneity across ecosystem types on average increased the diversity effect from explaining 49% to 72% of the variation in ecosystem functions. In contrast to our expectation, the diversity effect was more strongly mediated by variation in species richness than by species turnover. Our findings reveal that environmental heterogeneity strengthens the relationship between biodiversity and ecosystem functioning and that species richness is a stronger driver of ecosystem functioning than species turnover. Based on a broad range of taxa and ecosystem functions in a non-experimental system, these results are in line with predictions from biodiversity experiments and emphasize that conserving biodiversity is essential for maintaining ecosystem functioning.

Albrecht, J., M. K. Peters, A. Classen, J. N. Becker, C. Behler, A. Ensslin, S. W. Ferger, F. Gebert, M. Helbig-Bonitz, W. J. Kindeketa, A. V. Mayr, H. Njovu Henry K. Pabst, U. Pommer, J. Röder, G. Rutten, D. Schellenberger Costa, N. Sierra-Cornejo, A. Vogeler, M. G. R. Vollstädt, H. I. Dulle, C. D. Eardley, K. M. Howell, A. Keller, R. S. Peters, V. Kakengi, C. Hemp, J. Zhang, P. Manning, T. Müller, K. Böhning-Gaese, R. Brandl, D. Hertel, R. Kiese, M. Kleyer, Y. Kuzyakov, T. Nauss, M. Tschapka, M. Fischer, A. Hemp, I. Steffan-Dewenter, and M. Schleuning (2021) “Species richness is more important for ecosystem functioning than species turnover along an elevational gradient” Nature Ecology and Evolution in press
DOI: https://doi.org/10.1038/s41559-021-01550-9

Alexander Keller Follow

CiyaTheFox
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
2 Sep

Happy to share our paper on stingless bees foraging behavior on the Cerrado biodiversity hotspot!
Read and spread! 🐝🌼
With Carol Proença Fernanda Carvalho @TNCVasconcelos @ajcaguiar @CiyaTheFox
And other amazing students and colleagues

Reply on Twitter 1697995288743399509 Retweet on Twitter 1697995288743399509 12 Like on Twitter 1697995288743399509 65 Twitter 1697995288743399509
Retweet on Twitter Alexander Keller Retweeted
biorxivpreprint bioRxiv @biorxivpreprint ·
23 Jun

Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization https://biorxiv.org/cgi/content/short/2023.06.20.545721v1 #bioRxiv

Reply on Twitter 1672115753196060673 Retweet on Twitter 1672115753196060673 2 Like on Twitter 1672115753196060673 1 Twitter 1672115753196060673
ciyathefox Alexander Keller @ciyathefox ·
15 Jun

Semi-automated curation and manual addition of sequences to build reliable and extensive reference databases for ITS2 vascular plant DNA (meta-)barcoding

Reply on Twitter 1669402679062274048 Retweet on Twitter 1669402679062274048 Like on Twitter 1669402679062274048 2 Twitter 1669402679062274048
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
8 Jun

New preprint

Contrasting patterns of foraging behavior in Neotropical stingless bees using pollen and honey metabarcoding

Reply on Twitter 1666890843020484621 Retweet on Twitter 1666890843020484621 7 Like on Twitter 1666890843020484621 20 Twitter 1666890843020484621
Retweet on Twitter Alexander Keller Retweeted
geobiodiversity Senckenberg Research @geobiodiversity ·
30 May

#Invasive alien species not only colonize foreign regions, but they can also carry #invasive #microbiomes on their skin and in their gut. This may pose an undiscovered threat to native ecosystems, according to a recent study. 👉http://sgn.one/m8z
#SenckenbergScience

Reply on Twitter 1663482812052172802 Retweet on Twitter 1663482812052172802 4 Like on Twitter 1663482812052172802 9 Twitter 1663482812052172802
Load More

Recent Posts

  • Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding
  • Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020
  • Bumble bee workers face decreased efficiency of pollen collection and reduction in size due to Sulfoxaflor exposure in late European summer
  • Phylogenetic relatedness of food plants reveals highest insect herbivore specialisation at intermediate temperatures along a broad climatic gradient
  • Diets maintained in a changing world: Does land-use intensification alter wild bee communities by selecting for flexible generalists?

Categories

  • Bee-Plant-Interactions
  • Other Ecology Research
  • Other Microbiome Research
  • Plant Microbiomes
  • Pollinator Microbiomes
  • Tools
©2023 Cellular and Organismic Networks | WordPress Theme by Superbthemes.com