Skip to content
Menu
Cellular and Organismic Networks
  • The Group
  • Research
    • Pollinator-Microbe-Plant interactions
    • Bee-Plant-Interactions
    • Tools
    • Other Ecology Research
    • Other Microbiome Research
  • Publications
  • Institution
Cellular and Organismic Networks

Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient

Posted on May 28, 2021June 28, 2022

Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.

Mayr, A. V., A. Keller, M. K. Peters, G. Grimmer, B. Krischke, M. Geyer, T. Schmitt, and I. Steffan-Dewenter (2021) “Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient” Ecology and Evolution DOI: https://doi.org/10.1002/ece3.7605

Alexander Keller Follow

CiyaTheFox
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
2 Sep

Happy to share our paper on stingless bees foraging behavior on the Cerrado biodiversity hotspot!
Read and spread! 🐝🌼
With Carol Proença Fernanda Carvalho @TNCVasconcelos @ajcaguiar @CiyaTheFox
And other amazing students and colleagues

Reply on Twitter 1697995288743399509 Retweet on Twitter 1697995288743399509 12 Like on Twitter 1697995288743399509 65 Twitter 1697995288743399509
Retweet on Twitter Alexander Keller Retweeted
biorxivpreprint bioRxiv @biorxivpreprint ·
23 Jun

Opportunistic bacteria of grapevine crown galls are equipped with the genomic repertoire for opine utilization https://biorxiv.org/cgi/content/short/2023.06.20.545721v1 #bioRxiv

Reply on Twitter 1672115753196060673 Retweet on Twitter 1672115753196060673 2 Like on Twitter 1672115753196060673 1 Twitter 1672115753196060673
ciyathefox Alexander Keller @ciyathefox ·
15 Jun

Semi-automated curation and manual addition of sequences to build reliable and extensive reference databases for ITS2 vascular plant DNA (meta-)barcoding

Reply on Twitter 1669402679062274048 Retweet on Twitter 1669402679062274048 Like on Twitter 1669402679062274048 2 Twitter 1669402679062274048
Retweet on Twitter Alexander Keller Retweeted
alinecmar Aline C. Martins @alinecmar ·
8 Jun

New preprint

Contrasting patterns of foraging behavior in Neotropical stingless bees using pollen and honey metabarcoding

Reply on Twitter 1666890843020484621 Retweet on Twitter 1666890843020484621 7 Like on Twitter 1666890843020484621 20 Twitter 1666890843020484621
Retweet on Twitter Alexander Keller Retweeted
geobiodiversity Senckenberg Research @geobiodiversity ·
30 May

#Invasive alien species not only colonize foreign regions, but they can also carry #invasive #microbiomes on their skin and in their gut. This may pose an undiscovered threat to native ecosystems, according to a recent study. 👉http://sgn.one/m8z
#SenckenbergScience

Reply on Twitter 1663482812052172802 Retweet on Twitter 1663482812052172802 4 Like on Twitter 1663482812052172802 9 Twitter 1663482812052172802
Load More

Recent Posts

  • Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding
  • Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020
  • Bumble bee workers face decreased efficiency of pollen collection and reduction in size due to Sulfoxaflor exposure in late European summer
  • Phylogenetic relatedness of food plants reveals highest insect herbivore specialisation at intermediate temperatures along a broad climatic gradient
  • Diets maintained in a changing world: Does land-use intensification alter wild bee communities by selecting for flexible generalists?

Categories

  • Bee-Plant-Interactions
  • Other Ecology Research
  • Other Microbiome Research
  • Plant Microbiomes
  • Pollinator Microbiomes
  • Tools
©2023 Cellular and Organismic Networks | WordPress Theme by Superbthemes.com