Skip to content
Menu
Cellular & Organismic Networks @ LMU Munich
  • The Group
  • Research
    • Pollinator-Microbe-Plant interactions
    • Bee-Plant-Interactions
    • Tools
    • Other Ecology Research
    • Other Microbiome Research
  • Publications
  • Institution
Cellular & Organismic Networks @ LMU Munich

FENNEC: Functional Exploration of Natural Networks and Ecological Communities

Posted on November 1, 2017June 28, 2022

Assessment of species composition in ecological communities and networks is an important aspect of biodiversity research. Yet, for many ecological questions the ecological properties (traits) of organisms in a community are more informative than their scientific names. Furthermore, other properties like threat status, invasiveness, or human usage are relevant for many studies, but they can not be directly evaluated from taxonomic names alone. Despite the fact that various public databases collect such trait information, it is still a tedious manual task to enrich existing community tables with those traits, especially for large data sets. For example, nowadays, meta-barcoding or automatic image processing approaches are designed for high-throughput analyses, yielding thousands of taxa for hundreds of samples in very short time frames.

We developed the FENNEC, a web-based workbench that eases this process by mapping publicly available trait data to the user’s community tables in an automated process. We run a public instance holding traits that cover a range of topics includeing specialization, invasiveness, vulnerability, and agricultural relevance. Scientists are free to use the FENNEC as a resource for their ecological research.

Website: https://fennec.molecular.eco

Freely available at GitHub:  https://github.com/molbiodiv/fennec

Preprint: https://www.biorxiv.org/content/early/2017/09/27/194308

Tweets by CiyaTheFox

Recent Posts

  • Phylogenetic relatedness of food plants reveals highest insect herbivore specialisation at intermediate temperatures along a broad climatic gradient
  • Diets maintained in a changing world: Does land-use intensification alter wild bee communities by selecting for flexible generalists?
  • Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis?
  • Wild bee larval food composition in five European cities
  • Critical links between biodiversity and health in wild bee conservation

Categories

  • Bee-Plant-Interactions
  • Other Ecology Research
  • Other Microbiome Research
  • Plant Microbiomes
  • Pollinator Microbiomes
  • Tools
©2022 Cellular & Organismic Networks @ LMU Munich | WordPress Theme by Superbthemes.com